Name

mq_overview — Overview of POSIX message queues

DESCRIPTION

POSIX message queues allow processes to exchange data in the form of messages. This API is distinct from that provided by System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.), but provides similar functionality.

Message queues are created and opened using mq_open(3); this function returns a message queue descriptor (mqd_t), which is used to refer to the open message queue in later calls. Each message queue is identified by a name of the form /somename. Two processes can operate on the same queue by passing the same name to mq_open(3).

Messages are transferred to and from a queue using mq_send(3) and mq_receive(3). When a process has finished using the queue, it closes it using mq_close(3), and when the queue is no longer required, it can be deleted using mq_unlink(3). Queue attributes can be retrieved and (in some cases) modified using mq_getattr(3) and mq_setattr(3). A process can request asynchronous notification of the arrival of a message on a previously empty queue using mq_notify(3).

A message queue descriptor is a reference to an open message queue description (cf. open(2)). After a fork(2), a child inherits copies of its parent's message queue descriptors, and these descriptors refer to the same open message queue descriptions as the corresponding descriptors in the parent. Corresponding descriptors in the two processes share the flags (mq_flags) that are associated with the open message queue description.

Each message has an associated priority, and messages are always delivered to the receiving process highest priority first. Message priorities range from 0 (low) to sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On Linux, sysconf(_SC_MQ_PRIO_MAX) returns 32768, but POSIX.1-2001 only requires an implementation to support priorities in the range 0 to 31; some implementations only provide this range.

The remainder of this section describes some specific details of the Linux implementation of POSIX message queues.

Library interfaces and system calls

In most cases the mq_*() library interfaces listed above are implemented on top of underlying system calls of the same name. Deviations from this scheme are indicated in the following table:

Library interface System call
mq_close(3) close(2)
mq_getattr(3) mq_getsetattr(2)
mq_open(3) mq_open(2)
mq_receive(3) mq_timedreceive(2)
mq_send(3) mq_timedsend(2)
mq_setattr(3) mq_getsetattr(2)
mq_timedreceive(3) mq_timedreceive(2)
mq_timedsend(3) mq_timedsend(2)
mq_unlink(3) mq_unlink(2)

Versions

POSIX message queues have been supported on Linux since kernel 2.6.6. Glibc support has been provided since version 2.3.4.

Kernel configuration

Support for POSIX message queues is configurable via the CONFIG_POSIX_MQUEUE kernel configuration option. This option is enabled by default.

Persistence

POSIX message queues have kernel persistence: if not removed by mq_unlink(3), a message queue will exist until the system is shut down.

Linking

Programs using the POSIX message queue API must be compiled with cc −lrt to link against the real-time library, librt.

/proc interfaces

The following interfaces can be used to limit the amount of kernel memory consumed by POSIX message queues:

/proc/sys/fs/mqueue/msg_max

This file can be used to view and change the ceiling value for the maximum number of messages in a queue. This value acts as a ceiling on the attr−>mq_maxmsg argument given to mq_open(3). The default and minimum value for msg_max is 10; the upper limit is HARD_MAX: (131072 / sizeof(void *)) (32768 on Linux/86). This limit is ignored for privileged processes (CAP_SYS_RESOURCE), but the HARD_MAX ceiling is nevertheless imposed.

/proc/sys/fs/mqueue/msgsize_max

This file can be used to view and change the ceiling on the maximum message size. This value acts as a ceiling on the attr−>mq_msgsize argument given to mq_open(3). The default and minimum value for msgsize_max is 8192 bytes; the upper limit is INT_MAX (2147483647 on Linux/86). This limit is ignored for privileged processes (CAP_SYS_RESOURCE).

/proc/sys/fs/mqueue/queues_max

This file can be used to view and change the system-wide limit on the number of message queues that can be created. Only privileged processes (CAP_SYS_RESOURCE) can create new message queues once this limit has been reached. The default value for queues_max is 256; it can be changed to any value in the range 0 to INT_MAX.

Resource limit

The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount of space that can be consumed by all of the message queues belonging to a process's real user ID, is described in getrlimit(2).

Mounting the message queue file system

On Linux, message queues are created in a virtual file system. (Other implementations may also provide such a feature, but the details are likely to differ.) This file system can be mounted using the following commands:

$ mkdir /dev/mqueue
$ mount -t mqueue none /dev/mqueue

The sticky bit is automatically enabled on the mount directory.

After the file system has been mounted, the message queues on the system can be viewed and manipulated using the commands usually used for files (e.g., ls(1) and rm(1)).

The contents of each file in the directory consist of a single line containing information about the queue:

$ ls /dev/mqueue/mymq
QSIZE:129     NOTIFY:2    SIGNO:0    NOTIFY_PID:8260
$ mount -t mqueue none /dev/mqueue

These fields are as follows:

QSIZE Number of bytes of data in all messages in the queue.

NOTIFY_PID

If this is nonzero, then the process with this PID has used mq_notify(3) to register for asynchronous message notification, and the remaining fields describe how notification occurs.

NOTIFY

Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2 is SIGEV_THREAD.

SIGNO

Signal number to be used for SIGEV_SIGNAL.

Polling message queue descriptors

On Linux, a message queue descriptor is actually a file descriptor, and can be monitored using select(2), poll(2), or epoll(7). This is not portable.

CONFORMING TO

POSIX.1-2001.

NOTES

System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an older API for exchanging messages between processes. POSIX message queues provide a better designed interface than System V message queues; on the other hand POSIX message queues are less widely available (especially on older systems) than System V message queues.

EXAMPLE

An example of the use of various message queue functions is shown in mq_notify(3).

SEE ALSO

getrlimit(2), mq_getsetattr(2), mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), poll(2), select(2), epoll(4)

COLOPHON

This page is part of release 2.79 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.


  t

Copyright (C) 2006 Michael Kerrisk <mtk.manpagesgmail.com>

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Since the Linux kernel and libraries are constantly changing, this
manual page may be incorrect or out-of-date.  The author(s) assume no
responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

Formatted or processed versions of this manual, if unaccompanied by
the source, must acknowledge the copyright and authors of this work.